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acter it is conceivable that the correction term might 
still become significant if the diffracting region is long. 
It is difficult to say exactly when the correction term 
in equation (26) might become important, but it could 
be a useful tool in numerical calculations to check the 
validity of ignoring O2D(x,z)/OX2 in the second-order 
equations. By simultaneously evaluating the first cor- 
rection term in equation (26) while performing the 
numerical integration of the hyperbolic system, one 
can tell immediately when this term becomes a signif- 
icant correction to D(x,z). 

We see that a good working result is the following: 
Let D~(x,t) be a solution (e.g. obtained numerically) 
to the first-order equation for a crystal of thickness t. 
Then, we may have confidence in this solution if 

[st0 I ( t -  z ' )C ~-z- [A(xret',z')OI( xret',Z')]dz' 

~ IO~(x, t)l (27) 

for a range of x, and a number of components of 
D~(x, t) for which DI(x, t) is numerically significant. 

5. Conc lus ions  

By converting the dynamical equations of high-energy- 
electron diffraction from an imperfect crystal into in- 
tegral equations we have been able to (i) construct an 
iterative solution for the Fourier coefficients of the 
electron wave function for both the first and second- 
order equations, and (ii) compare these solutions in 
such a fashion as to obtain an explicit correction term, 

which is a measure of the validity of ignoring second- 
order partial derivatives in the dynamical equations. 

In concluding this paper, we would like to stress the 
complementary aspects of the differential equation ap- 
proach and the integral approach to high-energy-elec- 
tron diffraction theory. The differential equations have 
received the most attention to date, undoubtedly owing 
to the ease by which they can be numerically im- 
plemented. On the other hand, the integral equations 
that we have developed in this paper have definite the- 
oretical advantages. For instance, with regard to the 
approximation investigated in this paper, it is difficult 
to look at the differential equation (7) and assess the 
importance of the - iVZdo(x, z)/2koz term. Even though 
the coefficient, -i/2k,,z, of this term is small, in some 
sense, we intuitively realize that it must be the specific 
crystal potential that decides the matter. In other 
words, there may be cumulative effects that make this 
term important. These cumulative effects are explicitly 
displayed in the integral of equation (27) thereby con- 
firming our intuitive feelings. 
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High-order covariance matrices are used to show that the maximal determinant rule and the regression 
equation can be applied successfully to the phase refinement and extension of protein structures. With 
structure factors calculated from the atomic model of insulin, the use of an order-400 covariance matrix 
leads to the structure phases with an average error A~ of 15 °. The method has also been applied to 
actual data of insulin for phase refinement and for phase extension from 2.8 to 2 .~. 

The investigation of the probability law for one struc- 
ture factor included in a Karle-Hauptman determinant, 
connected with the regression-plane equation, has been 
developed recently (de Rango, 1969; Tsoucaris, 1970; 
de Rango, Tsoucaris & Zelwer, 1974). Here the poss- 
ibility of applying the regression equation in phase 
determination of protein structures is investigated in 
two important cases: 

- re f inement  of the phases approximately known 
from the isomorphous-replacement method, 

- phase extension: determination of new structure- 
factor phases from approximately known data. 

We have already shown that the maximal deter- 
minant rule and the regression equation, using high- 
order covariance matrices, can be applied sucessfully 
to the phase determination of protein structures (de 

A C 31A - 5* 
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Rango & Mauguen, 1972). This has been performed 
with an order-150 covariance matrix for the structures 
of myoglobin (Kendrew, Dickerson, Stranberg, Davies, 
Phillips & Shore, 1960) and insulin (Blundell, Cutfield, 
Dodson, Dodson, Hodgkin, Mercola & Vijayan, 1971). 

In the present paper, we report the essentials of 
these results and also show that the use of high-order 
matrices leads to more accurate phases when the order 
increases from 150 to 400 (de Rango, Tsoucaris & 
Mauguen, 1973). 

T h e o r e t i c a l  background 

We recall first the essential results of multivariate 
probability theory. Let us consider a set of m nor- 
malized structure factors assumed to be random vari- 
ables (i.e. unknown): 

E~=EL_nq q=  1 . . .  m L: variable vector 
H a: fixed vector. 

The m × m table of the correlation coefficients Upa 
between these m structure factors form the eovarianee 
matrix, the determinant of which is a Karle-Hauptman 
determinant Dm [see below equation (6)]. 

These correlation coefficients are given by the 
Sayre-Hughes equation, as can be seen below: 

(EL_npE*L_na),.= U¢,,= Una-np (1) 
det (U,~)=Dm>_0. (la) 

The elements of the covariance matrix are unitary 
structure factors (Uooo = 1). 

It has been shown that the multivariate probability 
density p(E1. . .  Era) of the E¢ = EL-Ha set (q = 1 . . .  m) 
is an m-dimensional Laplace-Gauss law, as follows1" 
(in the non-centrosymmetric case): 

If we write 

q = l  p = l  q = l  
P#q 

where Dpa is an element of the inverse matrix of U,,p, 
then 

p(E1. . .  Era) =constant .  exp ( -  Qm). (3) 

Clearly, the maximum probability occurs for 

Qm = minimum. (4) 

If we denote by E,, q=  1 . . .  m, the value of E a for 
which Qm is minimum, we can write: 

1 c~Eq IE" a = 0 .  (4a) 

If E a is real, this is obvious; if E~ is complex, we 
make the derivation separately for the real and imagi- 
nary parts. 

t The notation is explained in detail in a previous paper 
(de Rango, Tsoucaris & Zelwer, 1974). Here, we will consider 
only the non-centrosymmetlic case. 

By substituting equation (2) in equation (4a), we 
obtain the regression equation: 

- -  1 m 
E . = I Z l  exp (i~o~)- D, ° ~ DpaE . . (5) 

M - - a t  
Peq  

The above results can be connected with deter- 
minants and expressed alternatively in the form of the 
maximum determinant rule, which is strictly equivalent 
to equation (4) or (4a): 

(ZJm + 1)most probabie = maximum (6) 
values of ga's 

where Am+l is the following determinant (the dots are 
drawn only to emphasize the special role of the last 
row and column which contain the random variables, 
i.e. the unknown structure factors): 

1 
zl,,+l= - ~  

1 . . . . . .  U - H p  . . . .  U _ n q  . . .  IE_L 

UHp . . .  1 . . . . . . . .  Unp-na..  iE-L+Hp 

i. 

UHa . . .  UHa-Hp. • • 1 . . . . . . .  iE-L+.~ 

If in Am+l, in addition to the known Uqp's, all 
elements of the last row are known except one, say 
Eq, then its expected value /Tq is given precisely by 
the regression equation (5). In this work only this 
equation has been used; however, an algorithm to 
minimize Qm by using an eigenvector procedure has 
been derived by Sarrazin (1970). 

Next, probability theory shows that Eq=Aq+iBq is 
distributed in the complex plane, according to a Gaus- 
sian law: 

p(E~)=p(Aq, B~) = na~-[ exp aq 2 (7) 

where Eq is the expected value [equation (5)] and a] 
is the variance given by: 

1 2_ < 1 . (7a) 
aq Dq a 

If we assume now that IEal is known, the distri- 
bution of the phase difference e a between ~0q (exact 
phase) and ~q (expected phase) is given by: 

p(e~/[Eql)= exp (A~ cos eq) . 
nlo(A~) , ~ =  ~o~- ~o~ (8) 

Aq= 21Eq/~O~l. (8a) 
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Fig. 2. Distribution of the differences ]eq] for Aq = 3. The curve 
indicates the theoret ical  distr ibution given by equat ion  (8). 
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a funct ion  of  the de te rminan t  order  m. The straight line 
indicates the theoretical  mean  value ( 1 -  m ] N ) .  

P h a s e - d e t e r m i n a t i o n  p r o c e s s  

The principle resides in the fact that, in the above 
theory, L is a random vector. When L sweeps out 
reciprocal space (the Hv's being fixed), this generates a 
family of Ar,+I(L) determinants having the same 
principle minor Din. Also, one can construct several 
determinants Din, and generate in the same way several 
families of A m + I ( L  ). 

In all cases, the same structure factor (or a symmetry 
related to it) say EL-nt1, may appear several times in the 
last row of different determinants, labelled by 1 ... .  i,j... 
For instance, the reflexion H = L j - H i 1  may appear in 
the j th  determinant "-'m+tAc~) and in the ith determinant 
Am+l, provided that" 

H = L~ - H v = L s -  Ht1 = . . . .  (9)  

For each of these determinants, a different expected 
value is determined by equation (5) for the same 
reflexion E n =  lEvi exp (i~0n). 

By taking into account equation (9), these deter- 
minations will be denoted as follows: 

E.cs)=/~Ls_.t1 from A(J) ~ m + l  

En " ) =  EL~-np from A,) etc. a m + l  • • • 

A better approximation to E .  will be obtained by 
averaging over all such determinations 

En___ (EH('/))s . (10) 

Equation (10) is strictly valid, of course, only if 
all determinations are independent. After introducing 
a weighting factor" 

l / , : < s )  _ n t s )  
l ~ " t 1  ~ ~qt1 

we have 
ErI ~- /D (s)V ~s),, (10a) X qt1 Z~H / J  • 

Finally, the phase ~n  of the right-hand side of (10a) is 

with 

D~)IErI(J>I sin ~H (J) 
J 

tan ~n ...... ~ ~'qtlniJ)i~--(-Si',~n I COS~n iJ~- 
J 

(10b) 

R.cJ) : IEHI <j) exp (i~n ~J)) (10c) 

and can be associated with the probability law 

1 
P ( f P . - ~ n ) -  zclo(An) e x p [ A n c o s ( q ) n - ~ n ) ]  (11) 

where (on is the exact phase, I0 denotes a Bessel function 
and An is given by 

A 2 = [  ~ A~ ) cos ~--~n(s)]2+[ ~ A~ ) sin ~--~n(s)] 2. ( l la )  
J ) 

In this last equation Aid ) indicates the value of At1, 
as given by equation (8a) associated with the occurence 
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of reflexion H = L j - H ~  at the qth column of the jth 
determinant A(~) '~Jm+l" 

The practical calculation of the above formulae 
could be speeded up by using Goedkoop determinants. 
However, it has been shown that the phases obtained 
by the maximal determinant rule are identical whether 
one uses Karle-Hauptman determinants containing 
all equivalent reflexions, or Goedkoop determinants 
(Mauguen, de Rango & Tsoucaris, 1973). 

The relation (5) should be considered as a statistical 
relation and not as a strict equality (for m < N). This 
implies that there is no rational dependence between 
the coordinates. In other words, the distribution of the 
structure invariants included in the determinant should 
be similar to the distribution given by Cochran (1955). 
Now, the structure-invariant distribution correspond- 
ing to low-index reflexions deviates from this distri- 
bution, because too many high-modulus structure in- 
variants occur with phase too far from zero ('abnormal 
invariants'). Also, it is important to emphasize that, 
in general, the Laplace-Gauss m-dimensional law 
should not be strictly valid for a resolution lower than 
3A.  

Some important aspects of the efficiency of the 
above equations were considered in a previous paper 
(de Rango, Tsoucaris & Zelwer, 1974). From this 
discussion and the above remarks it appears that, in 
the phase determination of protein structures, the re- 
gression equation (5) should be applied to D,, deter- 
minants for which: 

- the value should be as small as possible, 
- the occurence of 'abnormal invariants' should be 

avoided as much as possible. 

Influence of the resolution 
For the 4 ,& resolution, order-151 determinants have 

been built up by choosing the first-row elements (called 
basic elements) between the IEl's of high modulus 
included in the polar sphere R > 8 A. In this way, all 
elements of D,,, are included in the polar sphere R > 4 A. 
For myoglobin, the phases of 322 structure factors 
(with ]El > 1) have been calculated by using 150 order- 
151 determinants Am+l. The overall average error A 
is 45 °. 

Fig. 1 shows the variation of 5~0 as a function of 
Aa, defined by equation (8a). This means that the 
average of equation (13) has been performed separately 
for those terms for which Aq has values in the intervals 

.4~ ° 

3O 

oo 2;0 3;o 4;0 ro 

Fig. 4. Variation of the overall average value Aq~ as a function 
of the determinant order. (1.9 A resolution). 

A n a l y s i s  o f  these  results  - appl icat ion to 
m o d e l  structures  

In order to test the validity of the theoretical formulae 
we first use normalized structure factors calculated 
from the atomic models of myoglobin and insulin. 

A measure of the overall efficiency of the method, 
for a given set of reflexions, may be obtained from 
the average absolute value of the differences between 
the exact value ~n and the computed value ~i~ [equa- 
tion (lOb)I: 

A ¢ , =  (1~o . -  ¢ , , 1 ) ,  (12) 

when H belongs to a given set. 
A measure of the precision associated with the 

determination of each contributor to tan ~n in equation 
(10b) is also evaluated, as follows: by recalling that 
¢,u~ is in fact the value of ~)q=~l)L_Hq obtained from the 
jth determinant, we define: 

5~ = (leql),~.,. = ( le, . - , - , ,~-  ~ , . - .~ l )q ,  L (13) 

where ~Oq=~OL_l_lq is the exact value and Cq=~.-nq 
is a single determination obtained by equation (5). 
Here, also, the variable indices q and L may belong to a 
given set which will be indicated at each use of (13). 

00 200 ~ - '-  300 460 m 
Fig. 5. Variation of A~ as a function of the determinant order 

and of the resolution R. Curve a: R>6 A; Curve b: 6 
A>R>4 A; Curvee:4A>R>2.5 A; Curve d: 2"5 A>R> 
1.9 A. 
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indicated in Fig. 1. The corresponding theoretical 
curve is given by: 

1 ep(s)de ( ]4 )  
( 6 ~ ) t h e o r e t i c a l  . . . . .  ~ 0 

where p(e) is the probabil i ty density given by equation 
(8). 

The obtained plot is far from the theoretical curve, 
especially for the higher values of Aq. Moreover, the 
histogram of [eq[ for a given Aq is not in good agree- 
ment with the theoretical distribution given by equation 
(8) even for medium values of Aq, as shown in Fig. 2. 
Similar results have been obtained for insulin. 

For  the 1.9 ~ resolution, the calculation has been 
performed only with insulin. An  appreciable improve- 
ment  has been obtained in these results. The order  of  
Dm is still 150, but the low-index reflexions which 
involve ' abnormal '  invariants, are left out. Symmetric  
reflexions are forbidden as basic elements, which are 
chosen from the IEl's of  high modulus included in the 
polar  sphere R > 3 . 8  ./~. By using 800 determinants  

' -  O 

~ 5  

o -1 
z ~  

-160 -8'0 o 8o leO (E:q)o 
(a) 

0 

" ~ 5  

z ~  
-160 -8o  o 80 16o -(~q)o" 

(b) 

Am + 1, the phases of  1264 structure factors with modulus  
higher than one have been calculated with an average 
error  A ~  of  21°; these results]- are summarized in 
Table 1. The variat ion of  6cp [equation (13)] as a 
function of  Aq is now closer to the theoretical curve 

t" The use of 800 order-151 determinants allows the deter- 
mination of a thousand structure-factor phases in less than 5 
rain with a computer such as the IBM 370/165. 

40 

030. 
r-- 

o 

~20" 

t~ 
E 

z l O .  

r 
60 -80  () 

(c) 

80 160 (Eq) ° 

Fig. 6. Histograms of the errors in the phase determination of the reflexion 300 of insulin. (a) m = 100; 800A,, + t were considered; 
D,, construction criterion is based on ~IE~I; (b) m= 100; 800 A,,+t were considered; D,, construction criterion is based on 
~A cos ~0HK; (C) m =400; 500 A,,+~ were considered; D,, construction criterion is based on ~A cos ~0nK. 

Table 1. Summary of results obtained from phase refinement for calculated data of  insulin (1.9 A. resolution) 

800 500 
order-151 determinants order-401 determinants 

IEI>I 
IE[> 1.5 
IEI>2 
!E1>2"5 

Total number 
of phases 

2653 
836 
214 
41 

Number of deter- AO Number of deter- A~ 
mined phases mined phases 

1264 21 ° 1800 15 ° 
525 15 653 12 
147 13 178 10 
31 9 39 7 
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(Fig. 1); the distribution of leol, for a given Aq, is also 
in better agreement with the theoretical distribution 
(Fig. 2). 

Influence of the order 
An order-400 covariance matrix has been built up 

for insulin by choosing the basic elements according 
to the following criteria: 

(a) The modulus must be higher than 1.30. 
(b) Since the reflexions with low indices involve too 

many 'abnormal invariants', the basic-element re- 
flexions are included in the region of the polar sphere 
3 . 8 < R < 6  A. 

(c) Finally, we select in each step the basic element 
Uxq corresponding to the maximal value of the fol- 
lowing expression S for all elements of the row: 

m 
s =  Ig,, g xg ,,I c o s  --[-q)lp) • ( 1 5 )  

p = l  

The main characteristics of the determinants ob- 
tained by using these criteria are: 

- The distribution of the structure-invariant phases 
involved in the D m determinant is close to the theoreti- 
cal distribution and, as a consequence, the variation 
of ~rp as a function of Aq remains in good agreement 
with the theoretical curve when the determinant order 
increases from 150 to 400 (Figs. 1 and 2). 

- The value of the D m determinant decreases as a 
function of the order more quickly than the theoretical 
mean value since the actual value of the ratio (An,+ t/D~) 
is always lower than the mean value (1 -m/N) ,  as 
shown in Fig. 3. 

Using 500 order-401 determinants Am+t, the phases 
of 1800 structure factors (with [El > 1) have been cal- 
culated with an average error A¢, of 15 °. The overall 
average value of A~b decreases when the determinant 
order increases as shown in Fig. 4. However, if too 
many errors are introduced in the phases and the 
moduli, the determinant may become negative and, 
of course, the above calculations lack any meaning. 

The determination of the phases of the low-index 
reflexions is very sensitive to the characteristics and to 
the order of the D,, determinant. This fact is pointed 
out by the variation of the average value A~b which is 
given in Fig. 5, as a function of the order for reflexions 
corresponding to different resolutions. For all orders 
the higher value of Aq~ corresponds to the 6 A resolu- 
tion reflexions. The histograms of the differences eo 

corresponding to the reflexion 300 (Fig. 6) lead to 
similar remarks. Moreover, if the determinant is built 
up by using, as criterion, the maximal value of (Y.IE~[) 

~ 
. ~-'Z "S° -. ~,,,, ".-,., 

.... . ~ ~ I  

"~*t ] "~'..".'2: .... ~-" 
I@> 

( a )  

(b) 

", "- t" s t . ~ l  

(c) 

Fig. 7. A section of the insulin electron-density map calculated 
with: (a) phases evaluated by extension from 2.8 to 2 A 
(two cycles of regression-equation calculations were per- 
formed); (b) isomorphous phases (2.8 /~ resolution); (c) 
isomorphous phases (2 A resolution). Atomic positions close 
to the section 2/48 c for residues B~2, B14 and Bz, are drawn 
in according to the model structure. 

Table 2. Summary of results obta&ed from phase refinement and extension with a Dm determinant of order 300, 
for calculated data of insulin 

]EI>I 
IEI>I'5 
[El>2 
1E1>2"5 

Phase refinement (1.9 A resolution) Phase extension from 2.8 ,~ to 2"2/1, resolution 
Total number Number of deter- A~ Total number Number of deter- Aq~ 

of phases mined phases of phases mined phases 
2653 1640 17 ° 893 621 23 ° 
836 627 14 215 203 19 
214 172 13 41 39 19 
41 37 9 4 4 l0 
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[instead of criterion (c) given above] for all elements 
of each row, some of the determined phases can be 
quite wrong, despite a large value of An, as shown 
Fig. 6(a). 

P h a s e  e x t e n s i o n  and r e f i n e m e n t  - a p p l i c a t i o n  to  
a c t u a l  s t r u c t u r e s  

The above results have been used to initiate a method 
for phase refinement and for phase extension from 
medium to high resolution. The same criterion for 
the construction of D m has been used as previously, 
but for the extension the moduli of structure factors 
having unknown phases have been set equal to zero 
(actually, a third of the structure factors involved). 
For the calculated data of insulin, the phases of 621 
structure factors out of 893 structure factors have been 
evaluated by extension from 2.8 to 2.2 • resolution, 
the phases for R<2.8 /~ being exact phases. These 
results, summarized in Table 2, have been obtained 
with an order-300 covariance matrix, after three cycles 
of regression-equation calculations. The average ab- 
solute value of the shift between the first and the 
second cycle is 31°; between the two last cycles it is 
17 °. This suggests a reasonable convergence for the 
method used. The phase-extension data are to be com- 
pared in Table 2 with those obtained by phase refine- 
ment. 

The same method has been extended to the actual 
data of insulin. Here, we use the observed moduli; 
in the refinement process the starting phases, given by 
the isomorphous-replacement method, are included in 
the polar sphere R > 2 A. The phases of 1955 structure 
factors out of 2454 observable structure factors (with 
IE[ > 1) have been evaluated by using 500 order-401 
determinants. The corresponding electron-density map 
has shown that the general configuration of the protein 
chain remains roughly unchanged; no interpretation 
of the significant changes has been attempted yet. 

Similar calculations have been performed for the 
phase extension from 2-8 to 2 A. An electron-density 
map [Fig. 7(a)] has been calculated with: 

- f o r  all reflexions included in the polar sphere 
R > 2-8 A, the isomorphous phases; 

- for the reflexions included in the region of the 
polar sphere 2 . 8 > R > 2  A (with [El>l) ,  the phases 
evaluated by two cycles of regression-equation calcu- 
lations. 

This map seems in reasonable agreement with the 
electron-density map calculated with the isomorphous 
phases for 2.8 A resolution [Fig. 7(b)]. On the other 
hand, some apparent differences occur between 'the 
phase-extension' map and the electron-density map 
calculated with isomorphous phases for 2 A resolution 
[Fig. 7(e)]; nevertheless, the general configuration of 
the protein chain is still the same. The discussion of the 
stereochemically important details should be developed 
in the near future. 
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